Biomechanically and biochemically functional scaffold for recruitment of endogenous stem cells to promote tendon regeneration

Author:

Cui JingORCID,Ning Liang-Ju,Wu Fei-Peng,Hu Ruo-Nan,Li Xuan,He Shu-Kun,Zhang Yan-Jing,Luo Jia-Jiao,Luo Jing-Cong,Qin Ting-WuORCID

Abstract

AbstractTendon regeneration highly relies on biomechanical and biochemical cues in the repair microenvironment. Herein, we combined the decellularized bovine tendon sheet (DBTS) with extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) to fabricate a biomechanically and biochemically functional scaffold (tECM-DBTS), to provide a functional and stem cell ECM-based microenvironment for tendon regeneration. Our prior study showed that DBTS was biomechanically suitable to tendon repair. In this study, the biological function of tECM-DBTS was examined in vitro, and the efficiency of the scaffold for Achilles tendon repair was evaluated using immunofluorescence staining, histological staining, stem cell tracking, biomechanical and functional analyses. It was found that tECM-DBTS increased the content of bioactive factors and had a better performance for the proliferation, migration and tenogenic differentiation of bone marrow-derived stem cells (BMSCs) than DBTS. Furthermore, our results demonstrated that tECM-DBTS promoted tendon regeneration and improved the biomechanical properties of regenerated Achilles tendons in rats by recruiting endogenous stem cells and participating in the functionalization of these stem cells. As a whole, the results of this study demonstrated that the tECM-DBTS can provide a bionic microenvironment for recruiting endogenous stem cells and facilitating in situ regeneration of tendons.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Biomedical Engineering,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3