Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients

Author:

Schwarz Erica L.ORCID,Kelly John M.ORCID,Blum Kevin M.ORCID,Hor Kan N.,Yates Andrew R.ORCID,Zbinden Jacob C.,Verma Aekaansh,Lindsey Stephanie E.ORCID,Ramachandra Abhay B.,Szafron Jason M.,Humphrey Jay D.ORCID,Shin’oka ToshiharuORCID,Marsden Alison L.,Breuer Christopher K.

Abstract

AbstractIn the field of congenital heart surgery, tissue-engineered vascular grafts (TEVGs) are a promising alternative to traditionally used synthetic grafts. Our group has pioneered the use of TEVGs as a conduit between the inferior vena cava and the pulmonary arteries in the Fontan operation. The natural history of graft remodeling and its effect on hemodynamic performance has not been well characterized. In this study, we provide a detailed analysis of the first U.S. clinical trial evaluating TEVGs in the treatment of congenital heart disease. We show two distinct phases of graft remodeling: an early phase distinguished by rapid changes in graft geometry and a second phase of sustained growth and decreased graft stiffness. Using clinically informed and patient-specific computational fluid dynamics (CFD) simulations, we demonstrate how changes to TEVG geometry, thickness, and stiffness affect patient hemodynamics. We show that metrics of patient hemodynamics remain within normal ranges despite clinically observed levels of graft narrowing. These insights strengthen the continued clinical evaluation of this technology while supporting recent indications that reversible graft narrowing can be well tolerated, thus suggesting caution before intervening clinically.

Funder

Nationwide Children’s Hospital

Stanford University

Yale University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Biomedical Engineering,Medicine (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FSGe: A fast and strongly-coupled 3D fluid–solid-growth interaction method;Computer Methods in Applied Mechanics and Engineering;2024-11

2. Simulation-based design of bicuspidization of the aortic valve;The Journal of Thoracic and Cardiovascular Surgery;2024-09

3. Optimized Biomechanical Design of a Pulsatile Fontan Conduit for Congenital Heart Palliation;2024-06-23

4. Virtual Shape-Editing of Patient-Specific Vascular Models Using Regularized Kelvinlets;IEEE Transactions on Biomedical Engineering;2024-06

5. Hemodynamics and Wall Mechanics of Vascular Graft Failure;Arteriosclerosis, Thrombosis, and Vascular Biology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3