Identification and validation of serum metabolite biomarkers for endometrial cancer diagnosis

Author:

Liu WanshanORCID,Ma JinglanORCID,Zhang Juxiang,Cao Jing,Hu Xiaoxiao,Huang YidaORCID,Wang Ruimin,Wu Jiao,Di WenORCID,Qian KunORCID,Yin XiaORCID

Abstract

AbstractEndometrial cancer (EC) stands as the most prevalent gynecological tumor in women worldwide. Notably, differentiation diagnosis of abnormity detected by ultrasound findings (e.g., thickened endometrium or mass in the uterine cavity) is essential and remains challenging in clinical practice. Herein, we identified a metabolic biomarker panel for differentiation diagnosis of EC using machine learning of high-performance serum metabolic fingerprints (SMFs) and validated the biological function. We first recorded the high-performance SMFs of 191 EC and 204 Non-EC subjects via particle-enhanced laser desorption/ionization mass spectrometry (PELDI-MS). Then, we achieved an area-under-the-curve (AUC) of 0.957–0.968 for EC diagnosis through machine learning of high-performance SMFs, outperforming the clinical biomarker of cancer antigen 125 (CA-125, AUC of 0.610–0.684, p < 0.05). Finally, we identified a metabolic biomarker panel of glutamine, glucose, and cholesterol linoleate with an AUC of 0.901–0.902 and validated the biological function in vitro. Therefore, our work would facilitate the development of novel diagnostic biomarkers for EC in clinics.

Funder

MOST | National Natural Science Foundation of China

SJTU | School of Medicine, Shanghai Jiao Tong University

上海市教育委员会 | Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Program for Professor of Special Appointment

MOST | National Key Research and Development Program of China

Shanghai Natural Science Foundation

Innovation Group Project of Shanghai Municipal Health Commission

Innovation Research Plan by the Shanghai Municipal Education Commission

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3