Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors

Author:

Poch Christine M.ORCID,Foo Kylie S.,De Angelis Maria Teresa,Jennbacken KarinORCID,Santamaria Gianluca,Bähr Andrea,Wang Qing-DongORCID,Reiter Franziska,Hornaschewitz Nadja,Zawada Dorota,Bozoglu Tarik,My Ilaria,Meier AnnaORCID,Dorn Tatjana,Hege Simon,Lehtinen Miia L.,Tsoi Yat LongORCID,Hovdal DanielORCID,Hyllner Johan,Schwarz Sascha,Sudhop Stefanie,Jurisch Victoria,Sini Marcella,Fellows Mick D.,Cummings Matthew,Clarke Jonathan,Baptista Ricardo,Eroglu ElifORCID,Wolf EckhardORCID,Klymiuk Nikolai,Lu Kun,Tomasi Roland,Dendorfer AndreasORCID,Gaspari MarcoORCID,Parrotta Elvira,Cuda GiovanniORCID,Krane Markus,Sinnecker DanielORCID,Hoppmann Petra,Kupatt ChristianORCID,Fritsche-Danielson ReginaORCID,Moretti AlessandraORCID,Chien Kenneth R.ORCID,Laugwitz Karl-LudwigORCID

Abstract

AbstractHeart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host–graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3