Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors
-
Published:2022-05
Issue:5
Volume:24
Page:659-671
-
ISSN:1465-7392
-
Container-title:Nature Cell Biology
-
language:en
-
Short-container-title:Nat Cell Biol
Author:
Poch Christine M.ORCID, Foo Kylie S., De Angelis Maria Teresa, Jennbacken KarinORCID, Santamaria Gianluca, Bähr Andrea, Wang Qing-DongORCID, Reiter Franziska, Hornaschewitz Nadja, Zawada Dorota, Bozoglu Tarik, My Ilaria, Meier AnnaORCID, Dorn Tatjana, Hege Simon, Lehtinen Miia L., Tsoi Yat LongORCID, Hovdal DanielORCID, Hyllner Johan, Schwarz Sascha, Sudhop Stefanie, Jurisch Victoria, Sini Marcella, Fellows Mick D., Cummings Matthew, Clarke Jonathan, Baptista Ricardo, Eroglu ElifORCID, Wolf EckhardORCID, Klymiuk Nikolai, Lu Kun, Tomasi Roland, Dendorfer AndreasORCID, Gaspari MarcoORCID, Parrotta Elvira, Cuda GiovanniORCID, Krane Markus, Sinnecker DanielORCID, Hoppmann Petra, Kupatt ChristianORCID, Fritsche-Danielson ReginaORCID, Moretti AlessandraORCID, Chien Kenneth R.ORCID, Laugwitz Karl-LudwigORCID
Abstract
AbstractHeart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host–graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011). 2. Tzahor, E. & Poss, K. D. Cardiac regeneration strategies: staying young at heart. Science 356, 1035–1039 (2017). 3. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015). 4. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016). 5. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|