Machine learning-based motion tracking reveals an inverse correlation between adhesivity and surface motility of the leptospirosis spirochete

Author:

Abe Keigo,Koizumi NobuoORCID,Nakamura ShuichiORCID

Abstract

AbstractBacterial motility is often a crucial virulence factor for pathogenic species. A common approach to study bacterial motility is fluorescent labeling, which allows detection of individual bacterial cells in a population or in host tissues. However, the use of fluorescent labeling can be hampered by protein expression stability and/or interference with bacterial physiology. Here, we apply machine learning to microscopic image analysis for label-free motion tracking of the zoonotic bacterium Leptospira interrogans on cultured animal cells. We use various leptospiral strains isolated from a human patient or animals, as well as mutant strains. Strains associated with severe disease, and mutant strains lacking outer membrane proteins (OMPs), tend to display fast mobility and reduced adherence on cultured kidney cells. Our method does not require fluorescent labeling or genetic manipulation, and thus could be applied to study motility of many other bacterial species.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3