Snail-inspired robotic swarms: a hybrid connector drives collective adaptation in unstructured outdoor environments

Author:

Zhao DaORCID,Luo Haobo,Tu Yuxiao,Meng Chongxi,Lam Tin LunORCID

Abstract

AbstractTerrestrial self-reconfigurable robot swarms offer adaptable solutions for various tasks. However, most existing swarms are limited to controlled indoor settings, and often compromise stability due to their freeform connections. To address these issues, we present a snail robotic swarm system inspired by land snails, tailored for unstructured environments. Our system also employs a two-mode connection mechanism, drawing from the adhesive capabilities of land snails. The free mode, mirroring a snail’s natural locomotion, leverages magnet-embedded tracks for freeform mobility, thereby enhancing adaptability and efficiency. The strong mode, analogous to a snail’s response to disturbance, employs a vacuum sucker with directional polymer stalks for robust adhesion. By assigning specific functions to each mode, our system achieves a balance between mobility and secure connections. Outdoor experiments demonstrate the capabilities of individual robots and the exceptional synergy within the swarm. This research advances the real-world applications of terrestrial robotic swarms in unstructured environments.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A snail-inspired traveling-wave-driven miniature piezoelectric robot;Cell Reports Physical Science;2024-09

2. The Design of An Intelligent Self-Reconfigurable Single-Module Robot;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3