Abstract
AbstractSynthesis planning programs trained on chemical reaction data can design efficient routes to new molecules of interest, but are limited in their ability to leverage rare chemical transformations. This challenge is acute for enzymatic reactions, which are valuable due to their selectivity and sustainability but are few in number. We report a retrosynthetic search algorithm using two neural network models for retrosynthesis–one covering 7984 enzymatic transformations and one 163,723 synthetic transformations–that balances the exploration of enzymatic and synthetic reactions to identify hybrid synthesis plans. This approach extends the space of retrosynthetic moves by thousands of uniquely enzymatic one-step transformations, discovers routes to molecules for which synthetic or enzymatic searches find none, and designs shorter routes for others. Application to (-)-Δ9 tetrahydrocannabinol (THC) (dronabinol) and R,R-formoterol (arformoterol) illustrates how our strategy facilitates the replacement of metal catalysis, high step counts, or costly enantiomeric resolution with more elegant hybrid proposals.
Funder
United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory
Machine Learning for Pharmaceutical Discovery and Synthesis consortium
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献