Abstract
AbstractMultimode fiber (MMF) which supports parallel transmission of spatially distributed information is a promising platform for remote imaging and capacity-enhanced optical communication. However, the variability of the scattering MMF channel poses a challenge for achieving long-term accurate transmission over long distances, of which static optical propagation modeling with calibrated transmission matrix or data-driven learning will inevitably degenerate. In this paper, we present a self-supervised dynamic learning approach that achieves long-term, high-fidelity transmission of arbitrary optical fields through unstabilized MMFs. Multiple networks carrying both long- and short-term memory of the propagation model variations are adaptively updated and ensembled to achieve robust image recovery. We demonstrate >99.9% accuracy in the transmission of 1024 spatial degree-of-freedom over 1 km length MMFs lasting over 1000 seconds. The long-term high-fidelity capability enables compressive encoded transfer of high-resolution video with orders of throughput enhancement, offering insights for artificial intelligence promoted diffusive spatial transmission in practical applications.
Funder
National Natural Science Foundation of China
Shanghai Science and Technology Development Foundation
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献