Absence of localization in interacting spin chains with a discrete symmetry

Author:

Kloss BenediktORCID,Halimeh Jad C.,Lazarides Achilleas,Bar Lev YevgenyORCID

Abstract

AbstractNovel paradigms of strong ergodicity breaking have recently attracted significant attention in condensed matter physics. Understanding the exact conditions required for their emergence or breakdown not only sheds more light on thermalization and its absence in closed quantum many-body systems, but it also has potential benefits for applications in quantum information technology. A case of particular interest is many-body localization whose conditions are not yet fully settled. Here, we prove that spin chains symmetric under a combination of mirror and spin-flip symmetries and with a non-degenerate spectrum show finite spin transport at zero total magnetization and infinite temperature. We demonstrate this numerically using two prominent examples: the Stark many-body localization system (Stark-MBL) and the symmetrized many-body localization system (symmetrized–MBL). We provide evidence of delocalization at all energy densities and show that delocalization persists when the symmetry is broken. We use our results to construct two localized systems which, when coupled, delocalize each other. Our work demonstrates the dramatic effect symmetries can have on disordered systems, proves that the existence of exact resonances is not a sufficient condition for delocalization, and opens the door to generalization to higher spatial dimensions and different conservation laws.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3