Dynamic neural representations of memory and space during human ambulatory navigation

Author:

Maoz Sabrina L. L.,Stangl MatthiasORCID,Topalovic UrosORCID,Batista Daniel,Hiller SonjaORCID,Aghajan Zahra M.,Knowlton BarbaraORCID,Stern John,Langevin Jean-PhilippeORCID,Fried ItzhakORCID,Eliashiv Dawn,Suthana NanthiaORCID

Abstract

AbstractOur ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one’s position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Evelyn F. McKnight Brain Research Foundation

W. M. Keck Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3