Abstract
AbstractThe subduction of oceanic plates beneath continental lithosphere is responsible for continental growth and recycling of oceanic crust, promoting the formation of Cordilleran arcs. However, the processes that control the evolution of these Cordilleran orogenic belts, particularly during their early stages of formation, have not been fully investigated. Here we use a multi-proxy geochemical approach, based on zircon petrochronology and whole-rock analyses, to assess the early evolution of the Andes, one of the most remarkable continental arcs in the world. Our results show that magmatism in the early Andean Cordillera occurred over a period of ~120 million years with six distinct plutonic episodes between 215 and 94 Ma. Each episode is the result of a complex interplay between mantle, crust, slab and sediment contributions that can be traced using zircon chemistry. Overall, the magmatism evolved in response to changes in the tectonic configuration, from transtensional/extensional conditions (215–145 Ma) to a transtensional regime (138–94 Ma). We conclude that an external (tectonic) forcing model with mantle-derived inputs is responsible for the episodic plutonism in this extensional continental arc. This study highlights the use of zircon petrochronology in assessing the multimillion-year crustal scale evolution of Cordilleran arcs.
Funder
Millennium Science Initiative Program, grant NCN13_065
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference60 articles.
1. Scholl, D. W. & von Huene, R. 2007. Crustal recycling at modern subduction zones applied to the past: Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol. Soc. Am. Mem. 200, 9–32 (2007).
2. Ducea, M. N., Saleeby, J. B. & Bergantz, G. The architecture, chemistry and evolution of continental magmatic arcs. Annu. Rev. Earth Planet. Sci. 43, 10.1–10.33 (2015).
3. DeCelles, P. G., Ducea, M. N., Kapp, K. & Zandt, G. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).
4. Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).
5. Haschke, M. et al. in The Andes: Active Subduction Orogeny (eds Oncken, O. et al.) 337–353 (Springer, 2006).