Interaction data are identifiable even across long periods of time

Author:

Creţu Ana-MariaORCID,Monti Federico,Marrone Stefano,Dong Xiaowen,Bronstein Michael,de Montjoye Yves-AlexandreORCID

Abstract

AbstractFine-grained records of people’s interactions, both offline and online, are collected at large scale. These data contain sensitive information about whom we meet, talk to, and when. We demonstrate here how people’s interaction behavior is stable over long periods of time and can be used to identify individuals in anonymous datasets. Our attack learns the profile of an individual using geometric deep learning and triplet loss optimization. In a mobile phone metadata dataset of more than 40k people, it correctly identifies 52% of individuals based on their 2-hop interaction graph. We further show that the profiles learned by our method are stable over time and that 24% of people are still identifiable after 20 weeks. Our results suggest that people with well-balanced interaction graphs are more identifiable. Applying our attack to Bluetooth close-proximity networks, we show that even 1-hop interaction graphs are enough to identify people more than 26% of the time. Our results provide strong evidence that disconnected and even re-pseudonymized interaction data can be linked together making them personal data under the European Union’s General Data Protection Regulation.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anonymization: The imperfect science of using data while preserving privacy;Science Advances;2024-07-19

2. Re-pseudonymization Strategies for Smart Meter Data Are Not Robust to Deep Learning Profiling Attacks;Proceedings of the Fourteenth ACM Conference on Data and Application Security and Privacy;2024-06-19

3. Generating fine-grained surrogate temporal networks;Communications Physics;2024-01-09

4. Characterizing Privacy Risks in Healthcare IoT Systems;Communications in Computer and Information Science;2024

5. User Interaction Data in Apps: Comparing Policy Claims to Implementations;IFIP Advances in Information and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3