Sustainably developing global blue carbon for climate change mitigation and economic benefits through international cooperation

Author:

Feng CuicuiORCID,Ye GuanqiongORCID,Zeng Jiangning,Zeng Jian,Jiang QutuORCID,He Liuyue,Zhang Yaowen,Xu ZhenciORCID

Abstract

AbstractBlue carbon is the carbon storage in vegetated coastal ecosystems such as mangroves, salt marshes, and seagrass. It is gaining global attention as its role in climate change mitigation and local welfare growth. However, a global assessment on the long-term spatiotemporal sustainable development status of blue carbon has not been conducted, and the relations among blue carbon ecosystems, driving forces for climate change mitigation, and socioeconomic interventions for development capacity on a global scale are still unclear. Here, we constructed a blue carbon development index (BCDI), comprising three subsystems: driving force, resource endowment, and development capacity, to assess the sustainable development level of 136 coastal countries’ blue carbon over 24 consecutive years and explore the relationship among subsystems. We further propose a cooperation model to explore the feasibility of global blue carbon cooperation and quantify benefit allocation to specific countries. The results showed an upward trend in BCDI scores with variations in regional performance over the past two decades, and we found a positive correlation between development capacity and blue carbon resource endowment. Based on the scenario simulations of global cooperation, we found that coastal countries could improve the global average BCDI score, add 2.96 Mt of annual carbon sequestration, and generate $136.34 million in 2030 under Global Deep Cooperation scenario compared with the Business-As-Usual scenario.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3