Abstract
AbstractThe redox evolution of Archean upper mantle impacted mantle melting and the nature of chemical equilibrium between mantle, ocean and atmosphere of the early Earth. Yet, the origin of these variations in redox remain controversial. Here we show that a global compilation of ∼3.8-2.5 Ga basalts can be subdivided into group B-1, showing modern mid-ocean ridge basalt-like features ((Nb/La)PM ≥ 0.75), and B-2, which are similar to contemporary island arc-related basalts ((Nb/La)PM < 0.75). Our V-Ti redox proxy indicates a more reducing upper mantle, and the results of both ambient and modified mantle obtained from B-1 and B-2 samples, respectively, exhibit a ∼1.0 log unit increase in their temporal evolution for most cratons. Increases in mantle oxygen fugacity are coincident with the changes in basalt Th/Nb ratios and Nd isotope ratios, indicating that crustal recycling played a crucial role, and this likely occurred either via plate subduction or lithospheric drips.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献