Abstract
AbstractA long-standing question regarding carbonaceous chondrites (CCs) is how the CCs’ organics were sourced and converted before and after the accretion of their parent bodies. Growing evidence shows that amino acid abundances in CCs decrease with an elongated aqueous alteration. However, the underlying chemical processes are unclear. If CCs’ parent bodies were water-rock differentiated, pH and redox gradients can drive electrochemical reactions by using H2 as an electron source. Here, we simulate such redox conditions and demonstrate that α-amino acids are electrochemically altered to monoamines and α-hydroxy acids on FeS and NiS catalysts at 25 °C. This conversion is consistent with their enrichment compared to amino acid analogs in heavily altered CCs. Our results thus suggest that H2 can be an important driver for organic evolution in water-rock differentiated CC parent bodies as well as the Solar System icy bodies that might possess similar pH and redox gradients.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference102 articles.
1. Pizzarello, S. Chemical evolution and meteorites: an update. Orig. Life Evol. Biosph. 34, 25–34 (2004).
2. Pizzarello, S. & Shock, E. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. 2, 1–20 (2010).
3. Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta. 71, 2361–2382 (2007).
4. Harju, E. R. et al. Progressive aqueous alteration of CR carbonaceous chondrites. Geochim. Cosmochim. Acta 139, 267–292 (2014).
5. Kebukawa, Y., Chan, Q. H. S., Tachibana, S., Kobayashi, K. & Zolensky, M. E. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity. Sci. Adv. 3, e1602093–e1602093 (2017).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献