Abstract
AbstractIdentification of gene-by-environment interactions (GxE) is crucial to understand the interplay of environmental effects on complex traits. However, current methods evaluating GxE on biobank-scale datasets have limitations. We introduce MonsterLM, a multiple linear regression method that does not rely on model specification and provides unbiased estimates of variance explained by GxE. We demonstrate robustness of MonsterLM through comprehensive genome-wide simulations using real genetic data from 325,989 individuals. We estimate GxE using waist-to-hip-ratio, smoking, and exercise as the environmental variables on 13 outcomes (N = 297,529-325,989) in the UK Biobank. GxE variance is significant for 8 environment-outcome pairs, ranging from 0.009 – 0.071. The majority of GxE variance involves SNPs without strong marginal or interaction associations. We observe modest improvements in polygenic score prediction when incorporating GxE. Our results imply a significant contribution of GxE to complex trait variance and we show MonsterLM to be well-purposed to handle this with biobank-scale data.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献