An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data

Author:

Wang Xiao-SongORCID,Lee Sanghoon,Zhang HanORCID,Tang GongORCID,Wang Yue

Abstract

AbstractLow-cost multi-omics sequencing is expected to become clinical routine and transform precision oncology. Viable computational methods that can facilitate tailored intervention while tolerating sequencing biases are in high demand. Here we propose a class of transparent and interpretable computational methods called integral genomic signature (iGenSig) analyses, that address the challenges of cross-dataset modeling through leveraging information redundancies within high-dimensional genomic features, averaging feature weights to prevent overweighing, and extracting unbiased genomic information from large tumor cohorts. Using genomic dataset of chemical perturbations, we develop a battery of iGenSig models for predicting cancer drug responses, and validate the models using independent cell-line and clinical datasets. The iGenSig models for five drugs demonstrate predictive values in six clinical studies, among which the Erlotinib and 5-FU models significantly predict therapeutic responses in three studies, offering clinically relevant insights into their inverse predictive signature pathways. Together, iGenSig provides a computational framework to facilitate tailored cancer therapy based on multi-omics data.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference49 articles.

1. Schwartzberg, L., Kim, E. S., Liu, D. & Schrag, D. Precision oncology: who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book 37, 160–169 (2017).

2. Samarajiwa, S. A., Olan, I. & Bihary, D. Advanced Data Analytics in Health (eds Giabbanelli, P. J., Mago, V. K. & Papageorgiou, E. I.) Part V. (Springer, 2018).

3. Vasconcellos, V. F., Colli, L. M., Awada, A. & de Castro Junior, G. Precision oncology: as much expectations as limitations. Ecancermedicalscience 12, ed86 (2018).

4. Frohlich, H. et al. From hype to reality: data science enabling personalized medicine. BMC Med. 16, 150 (2018).

5. Yu, L., Zhou, D., Gao, L. & Zha, Y. Prediction of drug response in multilayer networks based on fusion of multiomics data. Methods 192, 85–92 (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3