Suppression of hollow droplet rebound on super-repellent surfaces

Author:

Zhou YingORCID,Zhang Chenguang,Zhao Wenchang,Wang ShiyuORCID,Zhu PinganORCID

Abstract

AbstractDroplet rebound is ubiquitous on super-repellent surfaces. Conversion between kinetic and surface energies suggests that rebound suppression is unachievable due to negligible energy dissipation. Here, we present an effective approach to suppressing rebounds by incorporating bubbles into droplets, even in super-repellent states. This suppression arises from the counteractive capillary effects within bubble-encapsulated hollow droplets. The capillary flows induced by the deformed inner-bubble surface counterbalance those driven by the outer-droplet surface, resulting in a reduction of the effective take-off momentum. We propose a double-spring system with reduced effective elasticity for hollow droplets, wherein the competing springs offer distinct behavior from the classical single-spring model employed for single-phase droplets. Through experimental, analytical, and numerical validations, we establish a comprehensive and unified understanding of droplet rebound, by which the behavior of single-phase droplets represents the exceptional case of zero bubble volume and can be encompassed within this overarching framework.

Funder

Research Grants Council, University Grants Committee

Shenzhen Science and Technology Innovation Commission

City University of Hong Kong

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3