Abstract
AbstractThe Cenozoic India-Eurasia collision has had profound impacts on shaping the Tibetan plateau, but its early history remains controversial due to uneven availability of constraints. Recent plate reconstructions reveal two prominent counterclockwise rotation (azimuthal change) rate peaks of the Indian plate at 52-44 and 33-20 Ma, respectively, which could bear key information about this collision history. Using fully dynamic three-dimensional numerical modeling, we show that the first rotation rate peak reflected the initial diachronous collision from the western-central to eastern Indian front, and the second peak reflected the full collision leading to strong coupling between India and Eurasia. Further comparison with observation suggests that the initial and complete India-Eurasia collision likely occurred at 55 ± 5 and 40 ± 5 Ma, respectively, an inference consistent with key geological observations. We suggest that this collision history is instructive for studying the tectonic history of the Tibetan plateau and its surrounding areas.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献