Abstract
AbstractElectrocatalytic water splitting is a promising route for sustainable hydrogen production. However, the high overpotential of the anodic oxygen evolution reaction poses significant challenge. SrIrO3-based perovskite-type catalysts have shown great potential for acidic oxygen evolution reaction, but the origins of their high activity are still unclear. Herein, we develop a Co-doped SrIrO3 system to enhance oxygen evolution reaction activity and elucidate the origin of catalytic activity. In situ experiments reveal Co activates surface lattice oxygen, rapidly exposing IrOx active sites, while bulk Co doping optimizes the adsorbate binding energy of IrOx. The Co-doped SrIrO3 demonstrates high oxygen evolution reaction electrocatalytic activity, markedly surpassing the commercial IrO2 catalysts in both conventional electrolyzer and proton exchange membrane water electrolyzer.
Funder
National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献