Mini-batch optimization enables training of ODE models on large-scale datasets

Author:

Stapor PaulORCID,Schmiester LeonardORCID,Wierling Christoph,Merkt Simon,Pathirana Dilan,Lange Bodo M. H.,Weindl DanielORCID,Hasenauer JanORCID

Abstract

AbstractQuantitative dynamic models are widely used to study cellular signal processing. A critical step in modelling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models become computationally extremely challenging. Mini-batch optimization methods, as employed in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark mini-batch optimization for ordinary differential equation (ODE) models, thereby establishing a direct link between dynamic modelling and machine learning. On our main application example, a large-scale model of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better optimization results and reducing computation by more than an order of magnitude. We expect that our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable modelling of even larger and more complex systems than what is currently possible.

Funder

EC | Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Energie

Gauss Centre for Supercomputing / Leibniz Supercomputing Centre, grant no. pr62li and grant no. pn72go

Gauss Centre for Supercomouting / Leibniz Supercomputing Centre, grant no. pr62li and grant no. pn72go

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural equivalent circuit models: Universal differential equations for battery modelling;Applied Energy;2024-10

2. Design patterns for the construction of computational biological models;Briefings in Bioinformatics;2024-05-23

3. Systems Approaches in Identifying Disease-Related Genes and Drug Targets;Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases;2024

4. On Hybrid Prescribed-Time Concurrent Learning with Switching Datasets;IFAC-PapersOnLine;2024

5. Nonlinear slow-timescale mechanisms in synaptic plasticity;Current Opinion in Neurobiology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3