Abstract
AbstractAdsorption of guest molecules by porous materials proceeds in a spontaneous exothermic way, whereas desorption usually requires external energy input as an endothermic process. Reducing such energy consumption makes great sense in practice. Here we report the reversible and automatic methanol (MeOH) adsorption/release in an ionic hydrogen-bonded organic framework (iHOF) constructed from guanidinium cation and borate anion ([B(OCH3)4]3[C(NH2)3]4Cl•4CH3OH, termed Gd-B) at ambient condition. The metastable Gd-B automatically releases all sixteen MeOH molecules (63.4 wt%) via desorption and tetra-methyl borate hydrolysis at ambient atmosphere and the structure can be recovered when re-exposed to MeOH vapor or liquid, mimicking combustible ice behavior but at ambient condition. Reversible capture/release of four guest MeOH molecules is also realized without destroying its crystal structure. The combustible Gd-B paves a way for exploring metastable iHOF materials as carrier for alternative energy source and drug delivery etc.
Funder
Natural Science Foundation of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献