Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency

Author:

Yang KaijieORCID,Pan Tingting,Dang Saichao,Gan QiaoqiangORCID,Han YuORCID

Abstract

AbstractDirect solar desalination exhibits considerable potential for alleviating the global freshwater crisis. However, the prevention of salt accumulation while maintaining high water production remains an important challenge that limits its practical applications because the methods currently employed for achieving rapid salt backflow usually result in considerable heat loss. Herein, we fabricate a solar evaporator featuring vertically aligned mass transfer bridges for water transport and salt backflow. The 3D open architecture constructed using mass transfer bridges enables the evaporator to efficiently utilize the conductive heat that would otherwise be lost, significantly improving the water evaporation efficiency without compromising on salt rejection. The fabricated evaporator can treat salt water with more than 10% salinity. Moreover, it can continuously and steadily work in a real environment under natural sunlight with a practical solar-to-water collection efficiency of >40%. Using the discharged water from reverse osmosis plants and sea water from the Red Sea, the evaporator demonstrates a daily freshwater generation rate of ~5 L/m2, which is sufficient to satisfy individual drinking water requirements. With strong salt rejection, high energy efficiency, and simple scalability, the 3D evaporator has considerable promise for freshwater supply for water-stressed and off-grid communities.

Funder

King Abdullah University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3