Abstract
AbstractWater scarcity is rapidly spreading across the planet, threatening the population across the five continents and calling for global sustainable solutions. Water reclamation is the most ecological approach for supplying clean drinking water. However, current water purification technologies are seldom sustainable, due to high-energy consumption and negative environmental footprint. Here, we review the cutting-edge technologies based on protein nanofibrils as water purification agents and we highlight the benefits of this green, efficient and affordable solution to alleviate the global water crisis. We discuss the different protein nanofibrils agents available and analyze them in terms of performance, range of applicability and sustainability. We underline the unique opportunity of designing protein nanofibrils for efficient water purification starting from food waste, as well as cattle, agricultural or dairy industry byproducts, allowing simultaneous environmental, economic and social benefits and we present a case analysis, including a detailed life cycle assessment, to establish their sustainable footprint against other common natural-based adsorbents, anticipating a bright future for this water purification approach.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference106 articles.
1. United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN General Assembly, 2015).
2. Stockholm Environment Institute, 6 Clean Water and Sanitation, The Government of Sweden. https://www.government.se/49f47b/contentassets/3bef47b49ed64a75bcdf56ff053ccaea/6---clean-water-and-sanitation.pdf.
3. United Nations Children’s Fund (UNICEF) and World Health Organization. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Special Focus on Inequalities (United Nations Children’s Fund (UNICEF) and World Health Organization, 2019).
4. Bolisetty, S., Peydayesh, M. & Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev. 48, 463–487 (2019).
5. Ibrahim, Y., Arafat, H. A., Mezher, T. & AlMarzooqi, F. An integrated framework for sustainability assessment of seawater desalination. Desalination 447, 1–17 (2018).
Cited by
177 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献