Abstract
AbstractThe energy dissipation and entropy production by self-propelled microswimmers differ profoundly from passive particles pulled by external forces. The difference extends both to the shape of the flow around the swimmer, as well as to the internal dissipation of the propulsion mechanism. Here we derive a general theorem that provides an exact lower bound on the total, external and internal, dissipation by a microswimmer. The problems that can be solved include an active surface-propelled droplet, swimmers with an extended propulsive layer and swimmers with an effective internal dissipation. We apply the theorem to determine the swimmer shapes that minimize the total dissipation while keeping the volume constant. Our results show that the entropy production by active microswimmers is subject to different fundamental limits than the entropy production by externally driven particles.
Funder
Max-Planck-Gesellschaft
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献