Metallic glass-based triboelectric nanogenerators

Author:

Xia XinORCID,Zhou Ziqing,Shang Yinghui,Yang YongORCID,Zi YunlongORCID

Abstract

AbstractSurface wear is a major hindrance in the solid/solid interface of triboelectric nanogenerators (TENG), severely affecting their output performance and stability. To reduce the mechanical input and surface wear, solid/liquid-interface alternatives have been investigated; however, charge generation capability is still lower than that in previously reported solid/solid-interface TENGs. Thus, achieving triboelectric interface with high surface charge generation capability and low surface wear remains a technological challenge. Here, we employ metallic glass as one triboelectric interface and show it can enhance the triboelectrification efficiency by up to 339.2%, with improved output performance. Through mechanical and electrical characterizations, we show that metallic glass presents a lower friction coefficient and better wear resistance, as compared with copper. Attributed to their low atomic density and the absence of grain boundaries, all samples show a higher triboelectrification efficiency than copper. Additionally, the devices demonstrate excellent humidity resistance. Under different gas pressures, we also show that metallic glass-based triboelectric nanogenerators can approach the theoretical limit of charge generation, exceeding that of Cu-based TENG by 35.2%. A peak power density of 15 MW·m-2 is achieved. In short, this work demonstrates a humidity- and wear-resistant metallic glass-based TENG with high triboelectrification efficiency.

Funder

Research Grants Council, University Grants Committee

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3