Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars

Author:

Ross Byron,Haussener SophiaORCID,Brinkert KatharinaORCID

Abstract

AbstractHuman deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resupply will not be possible. Photoelectrochemical (PEC) devices are investigated for the light-assisted production of hydrogen and carbon-based fuels from CO2 within the green energy transition on Earth. Their monolithic design and the sole reliance on solar energy makes them attractive for applications in space. Here, we establish the framework to evaluate PEC device performances on Moon and Mars. We present a refined Martian solar irradiance spectrum and establish the thermodynamic and realistic efficiency limits of solar-driven lunar water-splitting and Martian carbon dioxide reduction (CO2R) devices. Finally, we discuss the technological viability of PEC devices in space by assessing the performance combined with solar concentrator devices and explore their fabrication via in-situ resource utilization.

Funder

European Space Agency

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference74 articles.

1. Chow, R., Nelson, G. J. & Perry, J. L. Electrolyzer exergy analysis for an environmental control and life support system. In ASME 2018 International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/imece2018-88119 (2018).

2. Jones, H. W. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) is not feasible for Mars transit. In 46th International Conference on Environmental Systems (ICES). #20160014553 (2016).

3. European Space Agency. White Paper #08: Applied Space Sciences. ESA SciSpacE White Papers. https://esamultimedia.esa.int/docs/HRE/08_PhysicalSciences_Applied_Space_sciences.pdf (2021).

4. Brinkert, K. et al. Efficient solar hydrogen generation in microgravity environment. Nat. Commun. 9, 2527 (2018).

5. Kölbach, M., Rehfeld, K. & Matthias, M. Efficiency gains for thermally coupled solar hydrogen production in extreme cold. Energy Environ. Sci. 14, 4410–4417 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3