Abstract
AbstractMetal oxides are promising for photoelectrochemical (PEC) water splitting due to their robustness and low cost. However, poor charge carrier transport impedes their activity, particularly at low-bias voltage. Here we demonstrate the unusual effectiveness of phosphorus doping into bismuth vanadate (BiVO4) photoanode for efficient low-bias PEC water splitting. The resulting BiVO4 photoanode shows a separation efficiency of 80% and 99% at potentials as low as 0.6 and 1.0 VRHE, respectively. Theoretical simulation and experimental analysis collectively verify that the record performance originates from the unique phosphorus-doped BiVO4 configuration with concurrently mediated carrier density, trap states, and small polaron hopping. With NiFeOx cocatalyst, the BiVO4 photoanode achieves an applied bias photon-to-current efficiency of 2.21% at 0.6 VRHE. The mechanistic understanding of the enhancement of BiVO4 properties provides key insights in trap state passivation and polaron hopping for most photoactive metal oxides.
Funder
Shenzhen Science and Technology Innovation Commission
Hong Kong Research Grant Council (RGC) General Research Fund
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献