Abstract
AbstractRechargeable aqueous zinc-organic batteries are promising energy storage systems with low-cost aqueous electrolyte and zinc metal anode. The electrochemical properties can be systematically adjusted with molecular design on organic cathode materials. Herein, we use a symmetric small molecule quinone cathode, tetraamino-p-benzoquinone (TABQ), with desirable functional groups to protonate and accomplish dominated proton insertion from weakly acidic zinc electrolyte. The hydrogen bonding network formed with carbonyl and amino groups on the TABQ molecules allows facile proton conduction through the Grotthuss-type mechanism. It guarantees activation energies below 300 meV for charge transfer and proton diffusion. The TABQ cathode delivers a high capacity of 303 mAh g−1 at 0.1 A g−1 in a zinc-organic battery. With the increase of current density to 5 A g−1, 213 mAh g−1 capacity is still preserved with stable cycling for 1000 times. Our work proposes an effective approach towards high performance organic electrode materials.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献