Abstract
AbstractPolymers with two-dimensional (2D) network topologies are currently gaining significant attention due to their unique properties that originate from their regulated conformations. However, in contrast to conventional 1D- and 3D-networked macromolecules, the synthesis of such 2D networks provides challenges for polymer chemists because of the nature of the networking polymerisation reaction, which occurs in a spatially random fashion when conventional solution-phase synthesis is performed. Here we report a versatile synthesis of polymeric monosheets with unimolecularly thick networking architectures by exploiting the 2D nanospaces of metal–organic frameworks (MOFs) as reaction templates. Crosslinking radical polymerisation in the 2D nanospaces of pillared-layer-type MOFs affords monosheets of typical vinyl polymers and can be carried out on the gram scale. Remarkably, the prepared polymer monosheets are highly soluble in organic solvents and show atypical thermal and rheological properties that result from their 2D-regulated conformations that cannot be adopted by their 1D or 3D analogues.
Funder
MEXT | JST | Core Research for Evolutional Science and Technology
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献