Abstract
AbstractDirect conversion of CO2 to a single specific hydrocarbon with high selectivity is extremely attractive but very challenging. Herein, by employing an InZrOx-Beta composite catalyst in the CO2 hydrogenation, a high selectivity of 53.4% to butane is achieved in hydrocarbons (CO free) under 315 °C and 3.0 MPa, at a CO2 conversion of 20.4%. Various characterizations and DFT calculation reveal that the generation of methanol-related intermediates by CO2 hydrogenation is closely related to the surface oxygen vacancies of InZrOx, which can be tuned through modulating the preparation methods. In contrast, the three-dimensional 12-ring channels of H-Beta conduces to forming higher methylbenzenes and methylnaphthalenes containing isopropyl side-chain, which favors the transformation of methanol-related intermediates to butane through alkyl side-chain elimination and subsequent methylation and hydrogenation. Moreover, the catalytic stability of InZrOx-Beta in the CO2 hydrogenation is considerably improved by a surface silica protection strategy which can effectively inhibit the indium migration.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献