India’s potential for integrating solar and on- and offshore wind power into its energy system

Author:

Lu TianguangORCID,Sherman PeterORCID,Chen Xinyu,Chen Shi,Lu XiORCID,McElroy MichaelORCID

Abstract

AbstractThis paper considers options for a future Indian power economy in which renewables, wind and solar, could meet 80% of anticipated 2040 power demand supplanting the country’s current reliance on coal. Using a cost optimization model, here we show that renewables could provide a source of power cheaper or at least competitive with what could be supplied using fossil-based alternatives. The ancillary advantage would be a significant reduction in India’s future power sector related emissions of CO2. Using a model in which prices for wind turbines and solar PV systems are assumed to continue their current decreasing trend, we conclude that an investment in renewables at a level consistent with meeting 80% of projected 2040 power demand could result in a reduction of 85% in emissions of CO2 relative to what might be expected if the power sector were to continue its current coal dominated trajectory.

Funder

Harvard Global Institute

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference46 articles.

1. BP. BP Statistical Review of World Energy. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (2018).

2. NITI Aayog. India’s Energy and Emissions Outlook: Results from India Energy Model. https://niti.gov.in/sites/default/files/2019-07/India%E2%80%99s-Energy-and-Emissions-Outlook.pdf (2017).

3. Pachouri, R., Spencer, T., & Renjith, G. Exploring Electricity: Supply-mix Scenarios to 2030 (The Energy and Resources Institute, 2019).

4. Mecheri, M. & Le Moullec, Y. Supercritical CO2 Brayton cycles for coal-fired power plants. Energy 103, 758–771 (2016).

5. Gonzalez-Salazar, M. A., Kirsten, T. & Prchlik, L. Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 82, 1497–1513 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3