Abstract
AbstractCaffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites. These results may guide the future development of decaffeinated drinks.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference28 articles.
1. Negishi, O., Ozawa, T. & Imagawa, H. Conversion of xanthosine into caffeine in tea plants. Agric. Biol. Chem. 49, 251–253 (1985).
2. Ashihara, H., Monteiro, A. M., Gillies, F. M. & Crozier, A. Biosynthesis of caffeine in leaves of coffee. Plant Physiol. 111, 747–753 (1996).
3. Suzuki, T. & Takahashi, E. Biosynthesis of caffeine by tea-leaf extracts. Enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine. Biochem. J. 146, 87–96 (1975).
4. Suzuki, T. The participation of S-adenosylmethionine in the biosynthesis of caffeine in the tea plant. FEBS Lett. 24, 18–20 (1972).
5. López-Cruz, L., Salamone, J. D. & Correa, M. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front. Pharm. 9, 526 (2018).
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献