Abstract
AbstractNear-eye display technology is a rapidly growing field owing to the recent emergence of augmented and mixed reality. Ultrafast response time, high resolution, high luminance, and a dynamic range for outdoor use are all important for non-pixelated, pupil-forming optics. The current mainstream technologies using liquid crystals and organic materials cannot satisfy all these conditions. Thus, finely patterned light-emissive solid-state devices with integrated circuits are often proposed to meet these requirements. In this study, we integrated several advanced technologies to design a prototype microscale light-emitting diode (LED) arrays using quantum dot (QD)-based color conversion. Wafer-scale epilayer transfer and the bond-before-pattern technique were used to directly integrate 5-µm-scale GaN LED arrays on a foreign silicon substrate. Notably, the lithography-level alignment with the bottom wafer opens up the possibility for ultrafast operation with circuit integration. Spectrally pure color conversion and solvent-free QD patterning were also achieved using an elastomeric topographical mask. Self-assembled monolayers were applied to selectively alter the surface wettability for a completely dry process. The final emissive-type LED array integrating QD, GaN, and silicon technology resulted in a 1270 PPI resolution that is far beyond the retinal limit.
Funder
National Research Foundation of Korea
LG Display
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献