Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware

Author:

Nakajima MitsumasaORCID,Inoue KatsumaORCID,Tanaka KenjiORCID,Kuniyoshi Yasuo,Hashimoto Toshikazu,Nakajima KoheiORCID

Abstract

AbstractEver-growing demand for artificial intelligence has motivated research on unconventional computation based on physical devices. While such computation devices mimic brain-inspired analog information processing, the learning procedures still rely on methods optimized for digital processing such as backpropagation, which is not suitable for physical implementation. Here, we present physical deep learning by extending a biologically inspired training algorithm called direct feedback alignment. Unlike the original algorithm, the proposed method is based on random projection with alternative nonlinear activation. Thus, we can train a physical neural network without knowledge about the physical system and its gradient. In addition, we can emulate the computation for this training on scalable physical hardware. We demonstrate the proof-of-concept using an optoelectronic recurrent neural network called deep reservoir computer. We confirmed the potential for accelerated computation with competitive performance on benchmarks. Our results provide practical solutions for the training and acceleration of neuromorphic computation.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3