Discovery of a long-ranged charge order with 1/4 Ge1-dimerization in an antiferromagnetic Kagome metal

Author:

Chen ZiyuanORCID,Wu XueliangORCID,Zhou ShimingORCID,Zhang JiakangORCID,Yin RuotongORCID,Li YuanjiORCID,Li MingzheORCID,Gong Jiashuo,He MingquanORCID,Chai YishengORCID,Zhou XiaoyuanORCID,Wang YilinORCID,Wang AifengORCID,Yan Ya-JunORCID,Feng Dong-LaiORCID

Abstract

AbstractExotic quantum states arise from the interplay of various degrees of freedom such as charge, spin, orbital, and lattice. Recently, a short-ranged charge order (CO) was discovered deep inside the antiferromagnetic phase of Kagome magnet FeGe, exhibiting close relationships with magnetism. Despite extensive investigations, the CO mechanism remains controversial, mainly because the short-ranged behavior hinders precise identification of CO superstructure. Here, combining multiple experimental techniques, we report the observation of a long-ranged CO in high-quality FeGe samples, which is accompanied with a first-order structural transition. With these high-quality samples, the distorted 2 × 2 × 2 CO superstructure is characterized by a strong dimerization along the c-axis of 1/4 of Ge1-sites in Fe3Ge layers, and in response to that, the 2 × 2 in-plane charge modulations are induced. Moreover, we show that the previously reported short-ranged CO might be related to large occupational disorders at Ge1-site, which upsets the equilibrium of the CO state and the ideal 1 × 1 × 1 structure with very close energies, inducing nanoscale coexistence of these two phases. Our study provides important clues for further understanding the CO properties in FeGe and helps to identify the CO mechanism.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3