Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production

Author:

Zhou Peng,Chen Hui,Chao Yuguang,Zhang Qinghua,Zhang Weiyu,Lv Fan,Gu Lin,Zhao Qiang,Wang NingORCID,Wang Jinshu,Guo ShaojunORCID

Abstract

AbstractOrganic-inorganic lead halide perovskites are a new class of semiconductor materials with great potential in photocatalytic hydrogen production, however, their development is greatly plagued by their low photocatalytic activity, instability of organic component and lead toxicity in particular. Herein, we report an anti-dissolution environmentally friendly Cs2SnI6 perovskite anchored with a new class of atomically dispersed Pt-I3 species (PtSA/Cs2SnI6) for achieving the highly efficient photocatalytic hydrogen production in HI aqueous solution at room temperature. Particularly, we discover that Cs2SnI6 in PtSA/Cs2SnI6 has a greatly enhanced tolerance towards HI aqueous solution, which is very important for achieving excellent photocatalytic stability in perovskite-based HI splitting system. Remarkably, the PtSA/Cs2SnI6 catalyst shows a superb photocatalytic activity for hydrogen production with a record turnover frequency of 70.6 h−1per Pt, about 176.5 times greater than that of Pt nanoparticles supported Cs2SnI6 perovskite, along with superior cycling durability. Charge-carrier dynamics studies in combination with theory calculations reveal that the dramatically boosted photocatalytic performance on PtSA/Cs2SnI6 originates from both unique coordination structure and electronic property of Pt-I3 sites, and strong metal-support interaction effect that can not only greatly promote the charge separation and transfer, but also substantially reduce the energy barrier for hydrogen production. This work opens a new way for stimulating more research on perovskite composite materials for efficient hydrogen production.

Funder

National Natural Science Foundation of China

China National Funds for Distinguished Young Scientists

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3