Abstract
AbstractAcidic CO2 electroreduction (CO2R) using renewable electricity holds promise for high-efficiency generation of storable liquid chemicals with up to 100% CO2 utilization. However, the strong parasitic hydrogen evolution reaction (HER) limits its selectivity and energy efficiency (EE), especially at ampere-level current densities. Here we present that enhancing CO2R intermediate coverage on catalysts promotes CO2R and concurrently suppresses HER. We identified and engineered robust Cu6Sn5 catalysts with strong *OCHO affinity and weak *H binding, achieving 91% Faradaic efficiency (FE) for formic acid (FA) production at 1.2 A cm−2 and pH 1. Notably, the single-pass carbon efficiency reaches a new benchmark of 77.4% at 0.5 A cm−2 over 300 hours. In situ electrochemical Fourier-transform infrared spectroscopy revealed Cu6Sn5 enhances *OCHO coverage ~2.8× compared to Sn at pH 1. Using a cation-free, solid-state-electrolyte-based membrane-electrode-assembly, we produce 0.36 M pure FA at 88% FE over 130 hours with a marked full-cell EE of 37%.
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献