Photocatalytic dehydrogenative C-C coupling of acetonitrile to succinonitrile

Author:

Zhou Xian,Gao Xiaofeng,Liu Mingjie,Gao Zirui,Qin Xuetao,Xu Wenhao,Ye Shitong,Zhou Wenhua,Fan Haoan,Li Jing,Fan Shurui,Yang Lei,Fu JieORCID,Xiao DequanORCID,Lin LiliORCID,Ma DingORCID,Yao SiyuORCID

Abstract

AbstractThe coupling of acetonitrile into succinonitrile, an important terminal dinitrile for value-added nylon production, via a dehydrogenative route is highly attractive, as it combines the valuable chemical synthesis with the production of green hydrogen energy. Here, we demonstrate that it is possible to achieve a highly selective light driven dehydrogenative coupling of acetonitrile molecules to synthesize succinonitrile using anatase TiO2 based photocatalysts in aqueous medium under mild conditions. Under optimized conditions, the formation rate of succinonitrile reaches 6.55 mmol/(gcat*h), with over 97.5% selectivity to target product. Mechanism studies reveal that water acts as cocatalyst in the reaction. The excited hole of anatase semiconductor oxidizes water forming hydroxyl radical, which subsequently assists the cleavage of sp3 C-H bond of acetonitrile to generate ·CH2CN radical for further C-C coupling. The synergy between TiO2 and Pt cocatalyst is important to enhance the succinonitrile selectivity and prevent undesirable over-oxidation and hydrolysis. This work offers an alternative route to prepare succinonitrile based on renewable energy under mild conditions and avoid the use of toxic reagents and stoichiometric oxidative radical initiators.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3