EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking

Author:

Zhang Xinyu,Zhao Tianfang,Chen JianshengORCID,Shen YuanORCID,Li XuemingORCID

Abstract

AbstractDeep learning is a popular method for facilitating particle picking in single-particle cryo-electron microscopy (cryo-EM), which is essential for developing automated processing pipelines. Most existing deep learning algorithms for particle picking rely on supervised learning where the features to be identified must be provided through a training procedure. However, the generalization performance of these algorithms on unseen datasets with different features is often unpredictable. In addition, while they perform well on the latest training datasets, these algorithms often fail to maintain the knowledge of old particles. Here, we report an exemplar-based continual learning approach, which can accumulate knowledge from the new dataset into the model by training an existing model on only a few new samples without catastrophic forgetting of old knowledge, implemented in a program called EPicker. Therefore, the ability of EPicker to identify bio-macromolecules can be expanded by continuously learning new knowledge during routine particle picking applications. Powered by the improved training strategy, EPicker is designed to pick not only protein particles but also general biological objects such as vesicles and fibers.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3