Transient dynamics of the phase transition in VO2 revealed by mega-electron-volt ultrafast electron diffraction

Author:

Xu ChenhangORCID,Jin Cheng,Chen Zijing,Lu Qi,Cheng Yun,Zhang Bo,Qi Fengfeng,Chen Jiajun,Yin Xunqing,Wang Guohua,Xiang DaoORCID,Qian DongORCID

Abstract

AbstractVanadium dioxide (VO2) exhibits an insulator-to-metal transition accompanied by a structural transition near room temperature. This transition can be triggered by an ultrafast laser pulse. Exotic transient states, such as a metallic state without structural transition, were also proposed. These unique characteristics let VO2 have great potential in thermal switchable devices and photonic applications. Although great efforts have been made, the atomic pathway during the photoinduced phase transition is still not clear. Here, we synthesize freestanding quasi-single-crystal VO2 films and examine their photoinduced structural phase transition with mega-electron-volt ultrafast electron diffraction. Leveraging the high signal-to-noise ratio and high temporal resolution, we observe that the disappearance of vanadium dimers and zigzag chains does not coincide with the transformation of crystal symmetry. After photoexcitation, the initial structure is strongly modified within 200 femtoseconds, resulting in a transient monoclinic structure without vanadium dimers and zigzag chains. Then, it continues to evolve to the final tetragonal structure in approximately 5 picoseconds. In addition, only one laser fluence threshold instead of two thresholds suggested in polycrystalline samples is observed in our quasi-single-crystal samples. Our findings provide essential information for a comprehensive understanding of the photoinduced ultrafast phase transition in VO2.

Funder

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3