Abstract
AbstractLoad bearing/energy storage integrated devices (LEIDs) allow using structural parts to store energy, and thus become a promising solution to boost the overall energy density of mobile energy storage systems, such as electric cars and drones. Herein, with a new high-strength solid electrolyte, we prepare a practical high-performance load-bearing/energy storage integrated electrochemical capacitors with excellent mechanical strength (flexural modulus: 18.1 GPa, flexural strength: 160.0 MPa) and high energy storage ability (specific capacitance: 32.4 mF cm−2, energy density: 0.13 Wh m−2, maximum power density: 1.3 W m−2). We design and compare two basic types of multilayered structures for LEID, which significantly enhance the practical bearing ability and working flexibility of the device. Besides, we also demonstrate the excellent processability of the LEID, by forming them into curved shapes, and secondarily machining and assembling them into complex structures without affecting their energy storage ability.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献