Abstract
AbstractDeveloping active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt−1 and turnover frequency of 30.3 H2 s−1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.
Funder
National Research Foundation Singapore
Agency for Science, Technology and Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献