Probing dark exciton navigation through a local strain landscape in a WSe2 monolayer

Author:

Gelly Ryan J.,Renaud Dylan,Liao Xing,Pingault Benjamin,Bogdanovic Stefan,Scuri GiovanniORCID,Watanabe KenjiORCID,Taniguchi TakashiORCID,Urbaszek BernhardORCID,Park Hongkun,Lončar MarkoORCID

Abstract

AbstractIn WSe2 monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2 monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2 monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2 and demonstrates a route towards exciton traps for exciton condensation.

Funder

U.S. Department of Defense

National Science Foundation

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory

U.S. Department of Energy

Samsung

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3