Abstract
AbstractResidual systemic inflammation and mucosal immune dysfunction persist in people living with HIV, despite treatment with combined anti-retroviral therapy, but the underlying immune mechanisms are poorly understood. Here we report that the altered immune landscape of the oral mucosa of HIV-positive patients on therapy involves increased TLR and inflammasome signaling, localized CD4+ T cell hyperactivation, and, counterintuitively, enrichment of FOXP3+ T cells. HIV infection of oral tonsil cultures in vitro causes an increase in FOXP3+ T cells expressing PD-1, IFN-γ, Amphiregulin and IL-10. These cells persist even in the presence of anti-retroviral drugs, and further expand when stimulated by TLR2 ligands and IL-1β. Mechanistically, IL-1β upregulates PD-1 expression via AKT signaling, and PD-1 stabilizes FOXP3 and Amphiregulin through a mechanism involving asparaginyl endopeptidase, resulting in FOXP3+ cells that are incapable of suppressing CD4+ T cells in vitro. The FOXP3+ T cells that are abundant in HIV-positive patients are phenotypically similar to the in vitro cultured, HIV-responsive FOXP3+ T cells, and their presence strongly correlates with CD4+ T cell hyper-activation. This suggests that FOXP3+ T cell dysregulation might play a role in the mucosal immune dysfunction of HIV patients on therapy.
Funder
U.S. Department of Health & Human Services | NIH | Office of Extramural Research, National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献