Bacteriophage defends murine gut from Escherichia coli invasion via mucosal adherence

Author:

Wu Jiaoling,Fu Kailai,Hou Chenglin,Wang Yuxin,Ji Chengyuan,Xue Feng,Ren Jianluan,Dai JianjunORCID,Barr Jeremy J.ORCID,Tang Fang

Abstract

AbstractBacteriophage are sophisticated cellular parasites that can not only parasitize bacteria but are increasingly recognized for their direct interactions with mammalian hosts. Phage adherence to mucus is known to mediate enhanced antimicrobial effects in vitro. However, little is known about the therapeutic efficacy of mucus-adherent phages in vivo. Here, using a combination of in vitro gastrointestinal cell lines, a gut-on-a-chip microfluidic model, and an in vivo murine gut model, we demonstrated that a E. coli phage, øPNJ-6, provided enhanced gastrointestinal persistence and antimicrobial effects. øPNJ-6 bound fucose residues, of the gut secreted glycoprotein MUC2, through domain 1 of its Hoc protein, which led to increased intestinal mucus production that was suggestive of a positive feedback loop mediated by the mucus-adherent phage. These findings extend the Bacteriophage Adherence to Mucus model into phage therapy, demonstrating that øPNJ-6 displays enhanced persistence within the murine gut, leading to targeted depletion of intestinal pathogenic bacteria.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3