Abstract
AbstractThe quantum circuit model is the de-facto way of designing quantum algorithms. Yet any level of abstraction away from the underlying hardware incurs overhead. In this work, we develop quantum algorithms for Hamiltonian simulation "one level below” the circuit model, exploiting the underlying control over qubit interactions available in most quantum hardware and deriving analytic circuit identities for synthesising multi-qubit evolutions from two-qubit interactions. We then analyse the impact of these techniques under the standard error model where errors occur per gate, and an error model with a constant error rate per unit time. To quantify the benefits of this approach, we apply it to time-dynamics simulation of the 2D spin Fermi-Hubbard model. Combined with new error bounds for Trotter product formulas tailored to the non-asymptotic regime and an analysis of error propagation, we find that e.g. for a 5 × 5 Fermi-Hubbard lattice we reduce the circuit depth from 1, 243, 586 using the best previous fermion encoding and error bounds in the literature, to 3, 209 in the per-gate error model, or the circuit-depth-equivalent to 259 in the per-time error model. This brings Hamiltonian simulation, previously beyond reach of current hardware for non-trivial examples, significantly closer to being feasible in the NISQ era.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference51 articles.
1. Villalonga, B. et al. Establishing the quantum supremacy frontier with a 281 Pflop/s simulation. Quant. Sci. Technol. 5 https://doi.org/10.1088/2058-9565/ab7eeb (2020).
2. Bremner, M. J., Jozsa, R. & Shepherd, D. J. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 459–472 (2011).
3. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theory Comput. 9, 143–252 (2010).
4. Bremner, M. J., Montanaro, A. & Shepherd, D. J. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum 1, 8 (2017).
5. Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献