Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain

Author:

Yang Yang,Zhu Xiaojuan,Wang Lili,Lang Junyu,Yao Guohua,Qin Tian,Ren Zhouhong,Chen Liwei,Liu XiORCID,Li WeiORCID,Wan YingORCID

Abstract

AbstractPd catalysts are widely used in alkynol semi-hydrogenation. However, due to the existence of scaling relationships of adsorption energies between the key adsorbed species, the increase in conversion is frequently accompanied by side reactions, thereby reducing the selectivity to alkenols. We report that the simultaneous increase in alkenol selectivity and alkynol conversion is achieved by manipulating interstitial atoms including B, P, C, S and N in Pd catalysts. A negative linear relationship is observed between the activation entropies of 2-methyl-3-butyn-2-ol and 2-methyl-3-buten-2-ol which is highly related to the filling of d-orbital of Pd catalysts by the modification of p-block elements. A catalyst co-modified by B and C atoms has the maximum d charge of Pd that achieves a 17-fold increase in the turn-over frequency values compared to the Lindlar catalysts in the semi-hydrogenation of 2-methyl-3-butyn-2-ol. When the conversion is close to 100%, the selectivity can be as high as 95%.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3