Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing

Author:

Liu Ying,Wang Chan,Liu Zhuo,Qu Xuecheng,Gai Yansong,Xue Jiangtao,Chao Shengyu,Huang Jing,Wu Yuxiang,Li Yusheng,Luo DanORCID,Li ZhouORCID

Abstract

AbstractIonically conductive fibers have promising applications; however, complex processing techniques and poor stability limit their practicality. To overcome these challenges, we proposed a stress-induced adaptive phase transition strategy to conveniently fabricate self-encapsulated hydrogel-based ionically conductive fibers (se-HICFs). se-HICFs can be produced simply by directly stretching ionic hydrogels with ultra-stretchable networks (us-IHs) or by dip-drawing from molten us-IHs. During this process, stress facilitated the directional migration and evaporation of water molecules in us-IHs, causing a phase transition in the surface layer of ionic fibers to achieve self-encapsulation. The resulting sheath-core structure of se-HICFs enhanced mechanical strength and stability while endowing se-HICFs with powerful non-contact electrostatic induction capabilities. Mimicking nature, se-HICFs were woven into spider web structures and camouflaged in wild environments to achieve high spatiotemporal resolution 3D depth-of-field sensing for different moving media. This work opens up a convenient route to fabricate stable functionalized ionic fibers.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3