Abstract
AbstractChemists aim to meet modern sustainability, health, and safety requirements by replacing conventional solvents with deep eutectic solvents (DESs). Through large melting point depressions, DESs may incorporate renewable solids in task-specific liquids. Yet, DES design is complicated by complex molecular interactions and a lack of comprehensive property databases. Even measuring pure component melting properties can be challenging, due to decomposition before melting. Here we overcame the decomposition of the quintessential DES constituent, choline chloride (ChCl). We measured its enthalpy of fusion (13.8 ± 3.0 kJ ⋅ mol) and melting point (687 ± 9 K) by fast scanning calorimetry combined with micro-XRD and high-speed optical microscopy. Our thermodynamically coherent fusion properties identify ChCl as an ionic plastic crystal and demonstrate negative deviations from ideal mixing for ChCl—contradicting previous assumptions. We hypothesise that the plastic crystal nature of ammonium salts governs their resilience to melting; pure or mixed. We show that DESs based on ionic plastic crystals can profit from (1) a low enthalpy of fusion and (2) favourable mixing. Both depress the melting point and can be altered through ion selection. Ionic plastic crystal-based DESs thus offer a platform for task-specific liquids at a broad range of temperatures and compositions.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献